Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
JCI Insight ; 9(8)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470489

RESUMO

Allergic airway disease (AAD) is an example of type 2 inflammation that leads to chronic airway eosinophilia controlled by CD4 Th2 cells. Inflammation is reinforced by mast cells and basophils armed with allergen-specific IgE made by allergen-specific B2 B cells of the adaptive immune system. Little is known about how AAD is affected by innate B1 cells, which produce natural antibodies (NAbs) that facilitate apoptotic cell clearance and detect damage- and pathogen-associated molecular patterns (DAMPS and PAMPS). We used transgenic mice lacking either B cells or NAbs in distinct mouse models of AAD that require either DAMPS or PAMPS as the initial trigger for type 2 immunity. In a DAMP-induced allergic model, driven by alum and uric acid, mouse strains lacking B cells (CD19DTA), NAbs (IgHEL MD4), or all secreted antibodies (sIgm-/-Aid-/-) displayed a significant reduction in both eosinophilia and Th2 priming compared with WT or Aid-/- mice lacking only germinal center-dependent high-affinity class-switched antibodies. Replenishing B cell-deficient mice with either unimmunized B1 B cells or NAbs during sensitization restored eosinophilia, suggesting that NAbs are required for licensing antigen-presenting cells to prime type 2 immunity. Conversely, PAMP-dependent type 2 priming to house dust mite or Aspergillus was not dependent on NAbs. This study reveals an underappreciated role of B1 B cell-generated NAbs in selectively driving DAMP-induced type 2 immunity.


Assuntos
Linfócitos B , Animais , Camundongos , Linfócitos B/imunologia , Células Th2/imunologia , Modelos Animais de Doenças , Camundongos Transgênicos , Camundongos Knockout , Imunidade Inata/imunologia , Camundongos Endogâmicos C57BL , Imunoglobulina E/imunologia , Alarminas/imunologia , Anticorpos/imunologia , Hipersensibilidade/imunologia , Eosinofilia/imunologia
2.
Immunity ; 55(4): 623-638.e5, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35385697

RESUMO

The epithelium is an integral component of mucosal barrier and host immunity. Following helminth infection, the intestinal epithelial cells secrete "alarmin" cytokines, such as interleukin-25 (IL-25) and IL-33, to initiate the type 2 immune responses for helminth expulsion and tolerance. However, it is unknown how helminth infection and the resulting cytokine milieu drive epithelial remodeling and orchestrate alarmin secretion. Here, we report that epithelial O-linked N-Acetylglucosamine (O-GlcNAc) protein modification was induced upon helminth infections. By modifying and activating the transcription factor STAT6, O-GlcNAc transferase promoted the transcription of lineage-defining Pou2f3 in tuft cell differentiation and IL-25 production. Meanwhile, STAT6 O-GlcNAcylation activated the expression of Gsdmc family genes. The membrane pore formed by GSDMC facilitated the unconventional secretion of IL-33. GSDMC-mediated IL-33 secretion was indispensable for effective anti-helminth immunity and contributed to induced intestinal inflammation. Protein O-GlcNAcylation can be harnessed for future treatment of type 2 inflammation-associated human diseases.


Assuntos
Alarminas , Mucosa Intestinal , Acilação , Alarminas/imunologia , Anti-Helmínticos/imunologia , Biomarcadores Tumorais , Citocinas , Proteínas de Ligação a DNA , Helmintíase/imunologia , Humanos , Hiperplasia , Inflamação , Interleucina-33 , Mucosa Intestinal/imunologia , Mebendazol , N-Acetilglucosaminiltransferases/imunologia , Proteínas Citotóxicas Formadoras de Poros , Fator de Transcrição STAT6/imunologia
3.
J Hematol Oncol ; 15(1): 5, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012610

RESUMO

BACKGROUND: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) through direct lysis of infected lung epithelial cells, which releases damage-associated molecular patterns and induces a pro-inflammatory cytokine milieu causing systemic inflammation. Anti-viral and anti-inflammatory agents have shown limited therapeutic efficacy. Soluble CD24 (CD24Fc) blunts the broad inflammatory response induced by damage-associated molecular patterns via binding to extracellular high mobility group box 1 and heat shock proteins, as well as regulating the downstream Siglec10-Src homology 2 domain-containing phosphatase 1 pathway. A recent randomized phase III trial evaluating CD24Fc for patients with severe COVID-19 (SAC-COVID; NCT04317040) demonstrated encouraging clinical efficacy. METHODS: Using a systems analytical approach, we studied peripheral blood samples obtained from patients enrolled at a single institution in the SAC-COVID trial to discern the impact of CD24Fc treatment on immune homeostasis. We performed high dimensional spectral flow cytometry and measured the levels of a broad array of cytokines and chemokines to discern the impact of CD24Fc treatment on immune homeostasis in patients with COVID-19. RESULTS: Twenty-two patients were enrolled, and the clinical characteristics from the CD24Fc vs. placebo groups were matched. Using high-content spectral flow cytometry and network-level analysis, we found that patients with severe COVID-19 had systemic hyper-activation of multiple cellular compartments, including CD8+ T cells, CD4+ T cells, and CD56+ natural killer cells. Treatment with CD24Fc blunted this systemic inflammation, inducing a return to homeostasis in NK and T cells without compromising the anti-Spike protein antibody response. CD24Fc significantly attenuated the systemic cytokine response and diminished the cytokine coexpression and network connectivity linked with COVID-19 severity and pathogenesis. CONCLUSIONS: Our data demonstrate that CD24Fc rapidly down-modulates systemic inflammation and restores immune homeostasis in SARS-CoV-2-infected individuals, supporting further development of CD24Fc as a novel therapeutic against severe COVID-19.


Assuntos
Antígeno CD24/uso terapêutico , COVID-19/prevenção & controle , Síndrome da Liberação de Citocina/prevenção & controle , Inflamação/prevenção & controle , SARS-CoV-2/efeitos dos fármacos , Idoso , Alarminas/imunologia , Alarminas/metabolismo , Antígeno CD24/química , COVID-19/imunologia , COVID-19/virologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/metabolismo , Método Duplo-Cego , Feminino , Proteína HMGB1/imunologia , Proteína HMGB1/metabolismo , Proteínas de Choque Térmico/imunologia , Proteínas de Choque Térmico/metabolismo , Homeostase/efeitos dos fármacos , Homeostase/imunologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/virologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Solubilidade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Resultado do Tratamento
4.
Cell Immunol ; 371: 104470, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942481

RESUMO

Inflammatory responses are required to block pathogen infection but can also lead to hypersensitivity and chronic inflammation. Barrier tissues actively release IL-33, ATP, and other alarmins during cell stress, helping identify pathogenic stimuli. However, it is unclear how these signals are integrated. Mast cells are critical initiators of allergic inflammation and respond to IL-33 and ATP. We found that mouse mast cells had a 3-6-fold increase in ATP-induced cytokine production when pre-treated with IL-33. This effect was observed at ATP concentrations < 100 µM and required < 30-minute IL-33 exposure. ATP-induced degranulation was not enhanced by pretreatment nor was the response to several pathogen molecules. Mechanistic studies implicated the P2X7 receptor and calcineurin/NFAT pathway in the enhanced ATP response. Finally, we found that IL-33 + ATP co-stimulation enhanced peritoneal eosinophil and macrophage recruitment. These results support the hypothesis that alarmins collaborate to surpass a threshold necessary to initiate an inflammatory response.


Assuntos
Trifosfato de Adenosina/metabolismo , Alarminas/imunologia , Interleucina-33/metabolismo , Mastócitos/metabolismo , Peritonite/patologia , Animais , Calcineurina/metabolismo , Degranulação Celular/imunologia , Células Cultivadas , Citocinas/biossíntese , Eosinófilos/imunologia , Inflamação/patologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo
5.
Front Immunol ; 12: 783616, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899749

RESUMO

Idiopathic inflammatory myopathy (IIM) is a heterogeneous group of acquired, autoimmune muscle diseases characterized by muscle inflammation and extramuscular involvements. Present literatures have revealed that dysregulated cell death in combination with impaired elimination of dead cells contribute to the release of autoantigens, damage-associated molecular patterns (DAMPs) and inflammatory cytokines, and result in immune responses and tissue damages in autoimmune diseases, including IIMs. This review summarizes the roles of various forms of programmed cell death pathways in the pathogenesis of IIMs and provides evidence for potential therapeutic targets.


Assuntos
Músculo Esquelético/patologia , Miosite/patologia , Morte Celular Regulada , Alarminas/imunologia , Alarminas/metabolismo , Animais , Autoantígenos/imunologia , Autoantígenos/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Miosite/imunologia , Miosite/metabolismo , Transdução de Sinais
6.
J Neuroinflammation ; 18(1): 252, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727934

RESUMO

OBJECTIVE: Astrocytes participate in the local innate immune response of the central nervous system. In response to stress such as ischemia, activated cells release endogenous factors known as damage-associated molecular patterns (DAMPs). Self-extracellular RNA (eRNA) is such a ubiquitous alarm signal. However, it is unclear whether eRNA is involved in the early acute phase of cerebral ischemia and is sufficient to sensitize astrocytes towards a DAMP or PAMP (pathogen-associated molecular pattern) reaction. METHODS: Pro-inflammatory activation upon eRNA stimulation was characterized in primary murine astrocyte cultures. In vivo, an experimental stroke model was used to localize and quantify eRNA in murine brain sections. Using primary cortical neurons and the mouse hippocampal neuronal cell line HT-22, neuronal RNA release upon stress conditions related to cerebral hypoxia/ischemia was analyzed. RESULTS: While low-dose eRNA alone did not promote pro-inflammatory activation of astrocytes in culture, it strongly enhanced the expression of pro-inflammatory cytokines in the presence of either Pam2CSK4, a synthetic PAMP molecule that mimics bacterial infection, or high mobility group box 1 (HMGB1), a prominent DAMP. Synergism of eRNA/Pam2CSK4 and eRNA/HMGB1 was prevented by blockage of the astroglial toll-like receptor (TLR)-2. Inhibition of NF-κB- and mitogen-activated protein kinase-dependent signaling pathways hampered eRNA/Pam2CSK4-mediated pro-inflammatory activation of astrocytes. In vivo, the amount of non-nuclear, presumably extracellular ribosomal RNA in close proximity to neurons significantly accumulated across the infarct core and peri-infarct areas that was accompanied by transcriptional up-regulation of various pro-inflammatory factors. Accordingly, the exposure of neurons to hypoxic/ischemic stress in vitro resulted in the release of eRNA, partly mediated by active cellular processes dependent on the cytosolic calcium level. CONCLUSION: The DAMP signal eRNA can sensitize astrocytes as active players in cerebral innate immunity towards exogenous and endogenous activators of inflammation (PAMPs and DAMPs) in a synergistic manner via TLR2-NF-κB-dependent signaling mechanisms. These findings provide new insights into the pathogenesis of ischemic stroke and other inflammatory neurological disorders. Further studies will clarify whether administration of RNase in vivo may serve as an effective treatment for inflammatory brain pathologies.


Assuntos
Alarminas/imunologia , Astrócitos/imunologia , Inflamação/imunologia , RNA/imunologia , Acidente Vascular Cerebral/imunologia , Animais , Camundongos , Acidente Vascular Cerebral/patologia
7.
Front Immunol ; 12: 754127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777366

RESUMO

COVID-19 presentations range from mild to moderate through severe disease but also manifest with persistent illness or viral recrudescence. We hypothesized that the spectrum of COVID-19 disease manifestations was a consequence of SARS-CoV-2-mediated delay in the pathogen-associated molecular pattern (PAMP) response, including dampened type I interferon signaling, thereby shifting the balance of the immune response to be dominated by damage-associated molecular pattern (DAMP) signaling. To test the hypothesis, we constructed a parsimonious mechanistic mathematical model. After calibration of the model for initial viral load and then by varying a few key parameters, we show that the core model generates four distinct viral load, immune response and associated disease trajectories termed "patient archetypes", whose temporal dynamics are reflected in clinical data from hospitalized COVID-19 patients. The model also accounts for responses to corticosteroid therapy and predicts that vaccine-induced neutralizing antibodies and cellular memory will be protective, including from severe COVID-19 disease. This generalizable modeling framework could be used to analyze protective and pathogenic immune responses to diverse viral infections.


Assuntos
Alarminas/imunologia , Tratamento Farmacológico da COVID-19 , COVID-19 , Modelos Biológicos , SARS-CoV-2 , Corticosteroides/uso terapêutico , Adulto , Idoso , Anti-Inflamatórios/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/diagnóstico , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19 , Humanos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Carga Viral
8.
Front Immunol ; 12: 740548, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721407

RESUMO

Certain cancer therapy has been shown to induce immunogenic cell death in cancer cells and may promote tumor progression instead. The external stress or stimuli may induce cell death and contribute toward the secretion of pro inflammatory molecules. The release of damage-associated molecular patterns (DAMPs) upon induction of therapy or cell death has been shown to induce an inflammatory response. Nevertheless, the mechanism as to how the DAMPs are released and engage in such activity needs further in-depth investigation. Interestingly, some studies have shown that DAMPs can be released through extracellular vesicles (EVs) and can bind to receptors such as toll-like receptors (TCRs). Ample pre-clinical studies have shown that cancer-derived EVs are able to modulate immune responses within the tumor microenvironment. However, the information on the presence of such DAMPs within EVs is still elusive. Therefore, this mini-review attempts to summarize and appraise studies that have shown the presence of DAMPs within cancer-EVs and how it affects the downstream cellular process.


Assuntos
Alarminas/imunologia , Vesículas Extracelulares/metabolismo , Neoplasias/imunologia , Animais , Carcinogênese , Humanos , Imunidade , Imunomodulação , Neoplasias/terapia , Receptores Toll-Like/metabolismo , Microambiente Tumoral
9.
Front Immunol ; 12: 744927, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621275

RESUMO

Ischemia and reperfusion injury is an early inflammatory process during liver transplantation that impacts on graft function and clinical outcomes. Interleukin (IL)-33 is a danger-associated molecular pattern involved in kidney ischemia/reperfusion injury and several liver diseases. The aims were to assess whether IL-33 was released as an alarmin responsible for ischemia/reperfusion injury in a mouse model of warm hepatic ischemia, and whether this hypothesis could also apply in the setting of human liver transplantation. First, a model of warm hepatic ischemia/reperfusion was used in wild-type and IL-33-deficient mice. Severity of ischemia/reperfusion injury was assessed with ALT and histological analysis. Then, serum IL-33 was measured in a pilot cohort of 40 liver transplant patients. Hemodynamic postreperfusion syndrome, graft dysfunction (assessed by model for early allograft scoring >6), renal failure, and tissue lesions on time-zero biopsies were assessed. In the mouse model, IL-33 was constitutively expressed in the nucleus of endothelial cells, immediately released in response to hepatic pedicle clamping without neosynthesis, and participated in the recruitment of neutrophils and tissue injury on site. The kinetics of IL-33 in liver transplant patients strikingly matched the ones in the animal model, as attested by serum levels reaching a peak immediately after reperfusion, which correlated to clinical outcomes including postreperfusion syndrome, posttransplant renal failure, graft dysfunction, and histological lesions of ischemia/reperfusion injury. IL-33 was an independent factor of graft dysfunction with a cutoff of IL-33 at 73 pg/ml after reperfusion (73% sensitivity, area under the curve of 0.76). Taken together, these findings establish the immediate implication of IL-33 acting as an alarmin in liver I/R injury and provide evidence of its close association with cardinal features of early liver injury-associated disorders in LT patients.


Assuntos
Alarminas/imunologia , Interleucina-33/imunologia , Transplante de Fígado , Fígado/patologia , Traumatismo por Reperfusão/patologia , Alarminas/metabolismo , Animais , Estudos de Coortes , Humanos , Interleucina-33/metabolismo , Fígado/imunologia , Fígado/metabolismo , Camundongos , Projetos Piloto , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/metabolismo
10.
Cell Immunol ; 369: 104424, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34469845

RESUMO

Invading pathogens are contained/eliminated by orchestrated actions of different humoral components of the innate immune response. One of them is endogenous molecules called alarmins, which contribute to diverse processes from danger sense until the infection extinction. Considering the participation of mast cells (MCs) in many aspects of the body's defense and, on the other hand, the importance of alarmins as molecules that signal damage/danger, in this study, we evaluated the effect of alarmins on MC phenotype and activity. We found that cathelicidin CRAMP and cytokine IL-33 significantly affect the appearance of Dectin-1, Dectin-2, RIG-I, and NOD1 receptors in mature MCs and modulate their inflammatory response. We established that chosen alarmins might stimulate MCs to release pro-inflammatory and immunoregulatory mediators and induce a migratory response. In conclusion, our data highlight that alarmins CRAMP and IL-33 might strongly influence MC features and activity, mainly by strengthening their role in the inflammatory mechanisms and controlling the activity of cells participating in antimicrobial processes.


Assuntos
Alarminas/metabolismo , Catelicidinas/metabolismo , Interleucina-33/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Adaptação Fisiológica/imunologia , Alarminas/imunologia , Animais , Catelicidinas/imunologia , Movimento Celular/imunologia , Feminino , Imunidade Inata/imunologia , Interleucina-33/imunologia , Ratos , Ratos Wistar
11.
Front Immunol ; 12: 720192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456928

RESUMO

COVID-19 might lead to multi-organ failure and, in some cases, to death. The COVID-19 severity is associated with a "cytokine storm." Danger-associated molecular patterns (DAMPs) are proinflammatory molecules that can activate pattern recognition receptors, such as toll-like receptors (TLRs). DAMPs and TLRs have not received much attention in COVID-19 but can explain some of the gender-, weight- and age-dependent effects. In females and males, TLRs are differentially expressed, likely contributing to higher COVID-19 severity in males. DAMPs and cytokines associated with COVID-19 mortality are elevated in obese and elderly individuals, which might explain the higher risk for severer COVID-19 in these groups. Adenosine signaling inhibits the TLR/NF-κB pathway and, through this, decreases inflammation and DAMPs' effects. As vaccines will not be effective in all susceptible individuals and as new vaccine-resistant SARS-CoV-2 mutants might develop, it remains mandatory to find means to dampen COVID-19 disease severity, especially in high-risk groups. We propose that the regulation of DAMPs via adenosine signaling enhancement might be an effective way to lower the severity of COVID-19 and prevent multiple organ failure in the absence of severe side effects.


Assuntos
Alarminas/imunologia , COVID-19/fisiopatologia , Mediadores da Inflamação/imunologia , Adenosina/metabolismo , Alarminas/antagonistas & inibidores , Animais , COVID-19/complicações , COVID-19/imunologia , COVID-19/terapia , Humanos , Inflamação/prevenção & controle , Mediadores da Inflamação/antagonistas & inibidores , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/prevenção & controle , Gravidade do Paciente , Transdução de Sinais , Receptores Toll-Like/antagonistas & inibidores , Receptores Toll-Like/imunologia
12.
Front Immunol ; 12: 628822, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381442

RESUMO

Background: Skeletal muscle ischemia/reperfusion (I/R) injury is an important clinical issue that can cause remote organ injury. Although its pathogenesis has not been fully elucidated, recent studies have suggested that damage-associated molecular patterns (DAMPs) are mediators of remote organ injury in sterile inflammation. The purpose of this study was to investigate the possible involvement of DAMPs, including the nuclear proteins high-mobility group box 1 (HMGB1) and histone H3, in the pathogenesis of skeletal muscle I/R injury in mice. Methods: Hindlimb ischemia was induced in mice through bilateral ligation of inguinal regions using rubber grommets. Reperfusion was induced by cutting the rubber grommets after 2-12 h of ischemic period. Survival rates, localization of HMGB1 and histone H3 in the gastrocnemius muscle, and circulating HMGB1 and histone H3 levels were analyzed. The effect of anti-HMGB1 and anti-histone H3 antibodies on survival was analyzed in mice with I/R injury. Results: All mice with hindlimb ischemia survived for at least 36 h, while all mice died within 24 h if the hindlimbs were reperfused after ischemia for 4-12 h. Immunohistochemical analysis revealed that HMGB1 translocated from the nucleus to the cytoplasm in the ischemic gastrocnemius muscle, while histone H3 was confined to the nucleus. Accordingly, serum HMGB1 levels were significantly elevated in mice with hindlimb I/R compared with normal mice or mice with hindlimb ischemia (P < 0.05). Serum histone H3 levels were not elevated after I/R. Treatment with anti-HMGB1 antibodies significantly improved survival of mice with hindlimb I/R injury compared with control antibodies (P < 0.05). Conclusions: HMGB1, but not histone H3, translocated to the cytoplasm during skeletal muscle ischemia, and was released into the systemic circulation after reperfusion in mice with I/R injury. Treatment with anti-HMGB1 antibodies partially improved survival.


Assuntos
Alarminas/metabolismo , Proteína HMGB1/metabolismo , Membro Posterior/patologia , Histonas/metabolismo , Músculo Esquelético/fisiologia , Traumatismo por Reperfusão/metabolismo , Alarminas/imunologia , Animais , Anticorpos Bloqueadores/administração & dosagem , Modelos Animais de Doenças , Proteína HMGB1/imunologia , Membro Posterior/cirurgia , Histonas/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico , Traumatismo por Reperfusão/imunologia
13.
Front Immunol ; 12: 653110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248940

RESUMO

To characterize transcriptomic changes in endothelial cells (ECs) infected by coronaviruses, and stimulated by DAMPs, the expressions of 1311 innate immune regulatomic genes (IGs) were examined in 28 EC microarray datasets with 7 monocyte datasets as controls. We made the following findings: The majority of IGs are upregulated in the first 12 hours post-infection (PI), and maintained until 48 hours PI in human microvascular EC infected by middle east respiratory syndrome-coronavirus (MERS-CoV) (an EC model for COVID-19). The expressions of IGs are modulated in 21 human EC transcriptomic datasets by various PAMPs/DAMPs, including LPS, LPC, shear stress, hyperlipidemia and oxLDL. Upregulation of many IGs such as nucleic acid sensors are shared between ECs infected by MERS-CoV and those stimulated by PAMPs and DAMPs. Human heart EC and mouse aortic EC express all four types of coronavirus receptors such as ANPEP, CEACAM1, ACE2, DPP4 and virus entry facilitator TMPRSS2 (heart EC); most of coronavirus replication-transcription protein complexes are expressed in HMEC, which contribute to viremia, thromboembolism, and cardiovascular comorbidities of COVID-19. ECs have novel trained immunity (TI), in which subsequent inflammation is enhanced. Upregulated proinflammatory cytokines such as TNFα, IL6, CSF1 and CSF3 and TI marker IL-32 as well as TI metabolic enzymes and epigenetic enzymes indicate TI function in HMEC infected by MERS-CoV, which may drive cytokine storms. Upregulated CSF1 and CSF3 demonstrate a novel function of ECs in promoting myelopoiesis. Mechanistically, the ER stress and ROS, together with decreased mitochondrial OXPHOS complexes, facilitate a proinflammatory response and TI. Additionally, an increase of the regulators of mitotic catastrophe cell death, apoptosis, ferroptosis, inflammasomes-driven pyroptosis in ECs infected with MERS-CoV and the upregulation of pro-thrombogenic factors increase thromboembolism potential. Finally, NRF2-suppressed ROS regulate innate immune responses, TI, thrombosis, EC inflammation and death. These transcriptomic results provide novel insights on the roles of ECs in coronavirus infections such as COVID-19, cardiovascular diseases (CVD), inflammation, transplantation, autoimmune disease and cancers.


Assuntos
Infecções por Coronavirus/imunologia , Síndrome da Liberação de Citocina/imunologia , Células Endoteliais/fisiologia , Inflamação/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , SARS-CoV-2/fisiologia , Alarminas/imunologia , Animais , Conjuntos de Dados como Assunto , Células Endoteliais/virologia , Perfilação da Expressão Gênica , Humanos , Imunidade Inata , Imunização , Camundongos , Mielopoese , Estresse Oxidativo , Tromboembolia
14.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299310

RESUMO

Oxidative stress is a major contributor to the pathogenesis of various inflammatory diseases. Accumulating evidence has shown that oxidative stress is characterized by the overproduction of reactive oxygen species (ROS). Previous reviews have highlighted inflammatory signaling pathways, biomarkers, molecular targets, and pathogenetic functions mediated by oxidative stress in various diseases. The inflammatory signaling cascades are initiated through the recognition of host cell-derived damage associated molecular patterns (DAMPs) and microorganism-derived pathogen associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). In this review, the effects of PRRs from the Toll-like (TLRs), the retinoic acid-induced gene I (RIG-I)-like receptors (RLRs) and the NOD-like (NLRs) families, and the activation of these signaling pathways in regulating the production of ROS and/or oxidative stress are summarized. Furthermore, important directions for future studies, especially for pathogen-induced signaling pathways through oxidative stress are also reviewed. The present review will highlight potential therapeutic strategies relevant to inflammatory diseases based on the correlations between ROS regulation and PRRs-mediated signaling pathways.


Assuntos
Inflamação/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Alarminas/genética , Alarminas/imunologia , Alarminas/metabolismo , Animais , Autofagia , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/terapia , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/imunologia , Proteína DEAD-box 58/metabolismo , Interações entre Hospedeiro e Microrganismos , Humanos , Inflamassomos/genética , Inflamassomos/imunologia , Inflamassomos/metabolismo , Inflamação/genética , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/terapia , Modelos Biológicos , Proteínas NLR/genética , Proteínas NLR/imunologia , Proteínas NLR/metabolismo , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia , Estresse Oxidativo , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia , Transdução de Sinais , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Ativação Transcricional
15.
PLoS One ; 16(7): e0254374, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34293006

RESUMO

While establishing worldwide collective immunity with anti SARS-CoV-2 vaccines, COVID-19 remains a major health issue with dramatic ensuing economic consequences. In the transition, repurposing existing drugs remains the fastest cost-effective approach to alleviate the burden on health services, most particularly by reducing the incidence of the acute respiratory distress syndrome associated with severe COVID-19. We undertook a computational repurposing approach to identify candidate therapeutic drugs to control progression towards severe airways inflammation during COVID-19. Molecular profiling data were obtained from public sources regarding SARS-CoV-2 infected epithelial or endothelial cells, immune dysregulations associated with severe COVID-19 and lung inflammation induced by other respiratory viruses. From these data, we generated a protein-protein interactome modeling the evolution of lung inflammation during COVID-19 from inception to an established cytokine release syndrome. This predictive model assembling severe COVID-19-related proteins supports a role for known contributors to the cytokine storm such as IL1ß, IL6, TNFα, JAK2, but also less prominent actors such as IL17, IL23 and C5a. Importantly our analysis points out to alarmins such as TSLP, IL33, members of the S100 family and their receptors (ST2, RAGE) as targets of major therapeutic interest. By evaluating the network-based distances between severe COVID-19-related proteins and known drug targets, network computing identified drugs which could be repurposed to prevent or slow down progression towards severe airways inflammation. This analysis confirmed the interest of dexamethasone, JAK2 inhibitors, estrogens and further identified various drugs either available or in development interacting with the aforementioned targets. We most particularly recommend considering various inhibitors of alarmins or their receptors, currently receiving little attention in this indication, as candidate treatments for severe COVID-19.


Assuntos
Alarminas/imunologia , Antivirais/farmacologia , COVID-19/complicações , Reposicionamento de Medicamentos , Pneumonia/complicações , Pneumonia/tratamento farmacológico , Antivirais/imunologia , Antivirais/uso terapêutico , Humanos , Pneumonia/imunologia
16.
Genes Immun ; 22(3): 141-160, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34140652

RESUMO

When surveying the current literature on COVID-19, the "cytokine storm" is considered to be pathogenetically involved in its severe outcomes such as acute respiratory distress syndrome, systemic inflammatory response syndrome, and eventually multiple organ failure. In this review, the similar role of DAMPs is addressed, that is, of those molecules, which operate upstream of the inflammatory pathway by activating those cells, which ultimately release the cytokines. Given the still limited reports on their role in COVID-19, the emerging topic is extended to respiratory viral infections with focus on influenza. At first, a brief introduction is given on the function of various classes of activating DAMPs and counterbalancing suppressing DAMPs (SAMPs) in initiating controlled inflammation-promoting and inflammation-resolving defense responses upon infectious and sterile insults. It is stressed that the excessive emission of DAMPs upon severe injury uncovers their fateful property in triggering dysregulated life-threatening hyperinflammatory responses. Such a scenario may happen when the viral load is too high, for example, in the respiratory tract, "forcing" many virus-infected host cells to decide to commit "suicidal" regulated cell death (e.g., necroptosis, pyroptosis) associated with release of large amounts of DAMPs: an important topic of this review. Ironically, although the aim of this "suicidal" cell death is to save and restore organismal homeostasis, the intrinsic release of excessive amounts of DAMPs leads to those dysregulated hyperinflammatory responses-as typically involved in the pathogenesis of acute respiratory distress syndrome and systemic inflammatory response syndrome in respiratory viral infections. Consequently, as briefly outlined in this review, these molecules can be considered valuable diagnostic and prognostic biomarkers to monitor and evaluate the course of the viral disorder, in particular, to grasp the eventual transition precociously from a controlled defense response as observed in mild/moderate cases to a dysregulated life-threatening hyperinflammatory response as seen, for example, in severe/fatal COVID-19. Moreover, the pathogenetic involvement of these molecules qualifies them as relevant future therapeutic targets to prevent severe/ fatal outcomes. Finally, a theory is presented proposing that the superimposition of coronavirus-induced DAMPs with non-virus-induced DAMPs from other origins such as air pollution or high age may contribute to severe and fatal courses of coronavirus pneumonia.


Assuntos
Alarminas/imunologia , COVID-19/imunologia , Síndrome da Liberação de Citocina/imunologia , Síndrome do Desconforto Respiratório/imunologia , SARS-CoV-2/imunologia , Viroses/imunologia , Alarminas/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Síndrome da Liberação de Citocina/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Modelos Imunológicos , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/metabolismo , SARS-CoV-2/fisiologia , Viroses/complicações , Viroses/metabolismo
17.
Eur J Immunol ; 51(9): 2210-2217, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34145909

RESUMO

Signal inhibitory receptor on leukocytes-1 (SIRL-1) is an inhibitory receptor with a hitherto unknown ligand, and is expressed on human monocytes and neutrophils. SIRL-1 inhibits myeloid effector functions such as reactive oxygen species (ROS) production. In this study, we identify S100 proteins as SIRL-1 ligands. S100 proteins are composed of two calcium-binding domains. Various S100 proteins are damage-associated molecular patterns (DAMPs) released from damaged cells, after which they initiate inflammation by ligating activating receptors on immune cells. We now show that the inhibitory SIRL-1 recognizes individual calcium-binding domains of all tested S100 proteins. Blocking SIRL-1 on human neutrophils enhanced S100 protein S100A6-induced ROS production, showing that S100A6 suppresses neutrophil ROS production via SIRL-1. Taken together, SIRL-1 is an inhibitory receptor recognizing the S100 protein family of DAMPs. This may help limit tissue damage induced by activated neutrophils.


Assuntos
Ativação de Neutrófilo/imunologia , Neutrófilos/imunologia , Receptores Imunológicos/imunologia , Proteínas S100/imunologia , Alarminas/imunologia , Humanos , Inflamação/imunologia , Monócitos/imunologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Imunológicos/antagonistas & inibidores , Transdução de Sinais/imunologia
18.
Transfusion ; 61(7): 2169-2178, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34181769

RESUMO

BACKGROUND: Despite the significant adverse clinical consequences of RBC alloimmunization, our understanding of the signals that induce immune responses to transfused RBCs remains incomplete. Though RBC storage has been shown to enhance alloimmunization in the hen egg lysozyme, ovalbumin, and human Duffy (HOD) RBC alloantigen mouse model, the molecular signals leading to immune activation in this system remain unclear. Given that the nonclassical major histocompatibility complex (MHC) Class I molecule CD1D can bind to multiple different lysophospholipids and direct immune activation, we hypothesized that storage of RBCs increases lysophospholipids known to bind CD1D, and further that recipient CD1D recognition of these altered lipids mediates storage-induced alloimmunization responses. STUDY DESIGN AND METHODS: We used a mass spectrometry-based approach to analyze the changes in lysophospholipids that are induced during storage of mouse RBCs. CD1D knockout (CD1D-KO) and wild-type (WT) control mice were transfused with stored HOD RBCs to measure the impact of CD1D deficiency on RBC alloimmunization. RESULTS: RBC storage results in alterations in multiple lysophospholipid species known to bind to CD1D and activate the immune system. Prior to transfusion, CD1D-deficient mice had lower baseline levels of polyclonal immunoglobulin (IgG) relative to WT mice. In response to stored RBC transfusion, CD1D-deficient mice generated similar levels of anti-HOD IgM and anti-HOD IgG. CONCLUSION: Although storage of RBCs leads to alteration of several lysophospholipids known to be capable of binding CD1D, storage-induced RBC alloimmunization responses are not impacted by recipient CD1D deficiency.


Assuntos
Antígenos CD1d/imunologia , Preservação de Sangue , Transfusão de Sangue , Eritrócitos/imunologia , Isoanticorpos/biossíntese , Isoantígenos/imunologia , Lisofosfolipídeos/sangue , Reação Transfusional/imunologia , Alarminas/sangue , Alarminas/imunologia , Animais , Especificidade de Anticorpos , Antígenos CD1d/genética , Antígenos CD1d/metabolismo , Sistema do Grupo Sanguíneo Duffy/genética , Sistema do Grupo Sanguíneo Duffy/imunologia , Feminino , Imunização , Imunoglobulina G/biossíntese , Imunoglobulina G/imunologia , Imunoglobulina M/biossíntese , Imunoglobulina M/imunologia , Isoanticorpos/imunologia , Lisofosfolipídeos/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Camundongos Transgênicos , Muramidase/imunologia , Ovalbumina/imunologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia
19.
Nat Rev Urol ; 18(9): 543-555, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34183833

RESUMO

The advent of immune checkpoint inhibition (ICI) has transformed the treatment paradigm for bladder cancer. However, despite the success of ICI in other tumour types, the majority of ICI-treated patients with bladder cancer failed to respond. The lack of efficacy in some patients could be attributed to a paucity of pre-existing immune reactive cells within the tumour immune microenvironment, which limits the beneficial effects of ICI. In this setting, strategies to attract lymphocytes before implementation of ICI could be helpful. Oncolytic virotherapy is thought to induce the release of damage-associated molecular patterns, eliciting a pro-inflammatory cytokine cascade and stimulating the activation of the innate immune system. Concurrently, oncolytic virotherapy-induced oncolysis leads to further release of neoantigens and subsequent epitope spreading, culminating in a robust, tumour-specific adaptive immune response. Combination therapy using oncolytic virotherapy with ICI has proven successful in a number of preclinical studies and is beginning to enter clinical trials for the treatment of both non-muscle-invasive and muscle-invasive bladder cancer. In this context, understanding of the mechanisms underpinning oncolytic virotherapy and its potential synergism with ICI will enable clinicians to effectively deploy oncolytic virotherapy, either as monotherapy or as combination therapy in the different clinical stages of bladder cancer.


Assuntos
Carcinoma de Células de Transição/terapia , Inibidores de Checkpoint Imunológico/uso terapêutico , Terapia Viral Oncolítica , Microambiente Tumoral/imunologia , Neoplasias da Bexiga Urinária/terapia , Imunidade Adaptativa/imunologia , Alarminas/imunologia , Antígenos de Neoplasias/imunologia , Carcinoma de Células de Transição/imunologia , Terapia Combinada , Citocinas/imunologia , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia , Vírus Oncolíticos , Neoplasias da Bexiga Urinária/imunologia
20.
Sci Rep ; 11(1): 13109, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162906

RESUMO

Breastfeeding influences the immune system development in infants and may even affect various immunological responses later in life. Breast milk provides a rich source of early nutrition for infant growth and development. However, the presence of certain compounds in breast milk, related to an unhealthy lifestyle or the diet of lactating mothers, may negatively impact infants. Based on a cohort study of atopic dermatitis (AD), we find the presence of damage-associated molecular patterns (DAMPs) activity in the mother's milk. By non-targeted metabolomic analysis, we identify the long-chain saturated fatty acids (LCSFA) as a biomarker DAMPs (+) breast milk samples. Similarly, a mouse model in which breastfed offspring are fed milk high in LCSFA show AD onset later in life. We prove that LCSFA are a type of damage-associated molecular patterns, which initiate a series of inflammatory events in the gut involving type 3 innate lymphoid cells (ILC3s). A remarkable increase in inflammatory ILC3s is observed in the gut, and the migration of these ILC3s to the skin may be potential triggers of AD. Gene expression analysis of ILC3s isolated from the gut reveal upregulation of genes that increase ILC3s and chemokines/chemokine receptors, which may play a role in ILC migration to the skin. Even in the absence of adaptive immunity, Rag1 knockout mice fed a high-LCSFA milk diet develop eczema, accompanied by increased gut ILC3s. We also present that gut microbiota of AD-prone PA milk-fed mice is different from non-AD OA/ND milk-fed mice. Here, we propose that early exposure to LCSFAs in infants may affect the balance of intestinal innate immunity, inducing a highly inflammatory environment with the proliferation of ILC3s and production of interleukin-17 and interleukin-22, these factors may be potential triggers or worsening factors of AD.


Assuntos
Dermatite Atópica/etiologia , Ácidos Graxos/análise , Leite Humano/química , Leite/química , Alarminas/análise , Alarminas/imunologia , Animais , Dermatite Atópica/patologia , Modelos Animais de Doenças , Ácidos Graxos/imunologia , Feminino , Interleucina-17/metabolismo , Interleucinas/metabolismo , Masculino , Metabolômica , Camundongos , Leite/imunologia , Leite Humano/imunologia , Estudos Prospectivos , Pele/imunologia , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...